
Unit 6

DBMS

BTCS 501-18

1

•OODBMS

Overview

OODBMS 3

 Relational quick review

 Why OO?

 What is an Object?

 What is an object ID?

 Classes, subclasses and inheritance

 UML

 OQL

Relational DBMS Quick Review

OODBMS 4

• Data model: ER.

• Data is stored in tables.

• Each row is a record.

• Relationships between tables (PK-FK).

TakesStudent Course
SID CID

name
name

year

SID name

424112211 Nora M

424221122 Sara S

424331133 Hala L

SID CID year Sem

424112211 CAP364 1425 1

424112211 CAP430 1426 2

424331133 CAP364 1426 1

Sem

CID name

CAP364 DB2

CAP430 Security

M N

Weaknesses of RDBMS

OODBMS 5

 Poor Representation of “Real World” Entities.

 Poor Support for Integrity and Enterprise

Constraints.

 Homogeneous Data Structure.

 Limited Operations.

 Difficulty Handling Recursive Queries.

 Schema changes are difficult.

 RDBMSs are poor at navigational access.

Why OO? Advanced DB Applications

OODBMS 6

 Computer-Aided Design (CAD).

 Computer-Aided Manufacturing (CAM).

 Computer-Aided Software Engineering (CASE).

 Network Management Systems.

 Office Information Systems (OIS) and Multimedia Systems.

 Digital Publishing.

 Geographic Information Systems (GIS).

 Interactive and Dynamic Web sites.

 Other applications with complex and interrelated objects and

procedural data – Read pages 805-808 in book.

What is an OODBMS anyway?

OODBMS 7

 OODBMS (Object-oriented DB Management System) is a database
with data stored in objects and collections NOT rows and tables.

 OO Concepts:

 Abstraction, encapsulation, information hiding.

 Objects and attributes.

 Object identity.

 Methods and messages.

 Classes, subclasses, superclasses, and inheritance.

 Overloading.

 Polymorphism and dynamic binding.

OODBMS

OODBMS 8

Traditional DBS
•Persistence
•Sharing
•Transactions
•Concurrency Control
•Recovery Control
•Security
•Integrity
•Querying

Semantic Data Model
•Generalization
•Aggregation

OOPS
•OID
•Encapsulation
•Inheritance
•Types & Classes
•Methods
•Complex objects
•Polymorphism
•Extensibility

Special Requirements

•Versioning
•Schema Evolution

OODBMS

Object

OODBMS 9

 Uniquely identifiable entity that contains both

the attributes that describe the state of a real-world object

and

the actions associated with it.

 Object encapsulates both state and behavior; an entity only

models state.

 Persistent objects vs. transient objects.

 Everything in an OODBMS is an object.

Object Identity (OID)

OODBMS 10

• Object identifier (OID) assigned to object when it is

created that is:

• System-generated.

• Unique to that object.

• Invariant.

• Independent of the values of its attributes (that is, its state).

• Invisible to the user (ideally).

Encapsulation
• Object

OODBMS 11

Attributes

Method 4 Method 3

Method 2Method 1

Class and Object (Instance)

OODBMS 12

BRANCH

BranchNo = B005
Street = 22 Deer Rd
City = London
Postcode = SW1 4EH

BranchNo = B007
Street = 16 Argyll St
City = Aberdeen
Postcode = AB2 3SU

BranchNo = B003
Street = 163 Main St
City = Glasgow
Postcode = G11 9QX

Attributes

branchNo
street
city
postcode

Methods

print()
getPostCode()
numberOfStaff()

Subclasses, Superclasses and Inheritance
Inheritance allows one class of objects to be defined as a special case of

a more general class.

• Special cases are subclasses and more general cases are

superclasses.

• Process of forming a superclass is generalization; forming a subclass

is specialization.

• Subclass inherits all properties of its superclass and can define its own

unique properties.

• Subclass can redefine inherited methods (override).

• All instances of subclass are also instances of superclass.

OODBMS 13

Single Inheritance

OODBMS 14

PERSON

STAFF

SALES
STAFF

MANAGER

Complex Objects
• A Complex object is something that can be viewed as

a single thing in the real world but it actually consists
of many sub-objects.

• 2 Types:
• Unstructured.

• Their structure hard to determine.

• Requires a large amount of storage.

• BLOB (Binary Large Objects): images & long test strings.

• Structured.
• Clear structure.
• Sub-objects in a part-of relationship.
• Will talk more about in next slide.

OODBMS 15

Object Query Language -- OQL
• A Query language for OODBMS.

• OQL can be used for both associative and navigational access:

• Associative query returns collection of objects (like SQL).

• Navigational query accesses individual objects and object relationships

used to navigate from one object to another.

• RDBMS

• OODBMS

• ORDBMS=RDBMS+OODBMS-SQL3 SQL4

OODBMS 16

OQL vs. SQL: A Simple Example

OODBMS 17

select

c.fname, c.lname

from

Depts d, d.employs e,

e.hasChildren c

where

d.name = “Sales”

select

c.fname, c.lname

from

Depts d, Employee e,

Children c

where

d.name = “Sales” and

d.deptID = e.deptID and

c.parentID = e.empID

OQL SQL

Query:
List the names of the children of employees working in the sales department.

Commercial OODBMs
• GemStone from Gemstone Systems Inc.,

• Itasca from Ibex Knowledge Systems SA,

• Objectivity/DB from Objectivity Inc.,

• ObjectStore from eXcelon Corp.,

• Ontos from Ontos Inc.,

• Poet from Poet Software Corp.,

• Jasmine from Computer Associates/Fujitsu,

• Versant from Versant Object Technology.

OODBMS 18

Imp questions

• Disscuss oodbms

• RDBMS VS oodbms

• Rdbms vs oodbms vs ordbmms

OODBMS 19

ORDBMS vs. ORDBMS

• similarities: both support user-defined ADTs, constructed types, reference
types,
object identity, query language

• differences: ORDBMSs add new data types to RDBMS; OODBMSs add

• DBMS functionalities to a programming language

• Integration with host language
• OODBMS: seamless integration with C++/Small talk

• ORDBMS: integration is only through embedded SQL in a host language

OODBMS

Continued…

• Application requirement
• OODBMS:

• few large objects fetched occasionally: few disk I/O

• long duration transactions on in-memory objects

• ability to cache objects in memory

• ORDBMS:
• large collection of data

• extensive disk I/O

• short transactions

OODBMS 21

Continued..

• Query language
• OODBMS:

• Query processing is relatively inefficient

• No standard available

• ORDBMS:
• Query facilities is the centerpiece

• SQL-based standards available: SQL3, SQL4

OODBMS 22

RDBMS VS ORDBMS

OODBMS 23

RDBMS VS OODBMS

OODBMS 24

Comparison

OODBMS 25

Dbms vs rdbms

OODBMS 26

Difference..

OODBMS 27

Slide 25- 28

Distributed Database

1. Distributed Database Concepts

2. Data Fragmentation, Replication and Allocation

3. Types of Distributed Database Systems

4. Query Processing

5. Concurrency Control and Recovery

6. 3-Tier Client-Server Architecture

Slide 25- 29

Distributed Database Concepts

• A transaction can be executed by multiple networked computers in a
unified manner.

• A distributed database (DDB) processes Unit of execution (a
transaction) in a distributed manner. A distributed database (DDB)
can be defined as

• A distributed database (DDB) is a collection of multiple logically related
database distributed over a computer network, and a distributed database
management system as a software system that manages a distributed
database while making the distribution transparent to the user.

Slide 25- 30

Distributed Database System

• Advantages
• Management of distributed data with different levels of

transparency:
• This refers to the physical placement of data (files, relations, etc.)

which is not known to the user (distribution transparency).

Slide 25- 31

Distributed Database System

• Advantages (transparency, contd.)
• The EMPLOYEE, PROJECT, and WORKS_ON tables may be fragmented

horizontally and stored with possible replication as shown below.

Distributed Database System

• Advantages (transparency, contd.)
• Distribution and Network transparency:

• Users do not have to worry about operational details of the network.

• There is Location transparency, which refers to freedom of issuing command from any
location without affecting its working.

• Then there is Naming transparency, which allows access to any names object (files, relations,
etc.) from any location.

Slide 25- 33

Distributed Database System

• Advantages (transparency, contd.)
• Replication transparency:

• It allows to store copies of a data at multiple sites as shown in the above diagram.

• This is done to minimize access time to the required data.

• Fragmentation transparency:
• Allows to fragment a relation horizontally (create a subset of tuples of a relation) or

vertically (create a subset of columns of a relation).

Slide 25- 34

Distributed Database System

• Other Advantages
• Increased reliability and availability:

• Reliability refers to system live time, that is, system is running efficiently most of the
time. Availability is the probability that the system is continuously available (usable or
accessible) during a time interval.

• A distributed database system has multiple nodes (computers) and if one fails then
others are available to do the job.

Distributed Database System

• Other Advantages (contd.)
• Improved performance:

• A distributed DBMS fragments the database to keep data closer to where it is needed
most.

• This reduces data management (access and modification) time significantly.

• Easier expansion (scalability):
• Allows new nodes (computers) to be added anytime without chaining the entire

configuration.

Slide 25- 36

Data Fragmentation, Replication and Allocation

• Data Fragmentation
• Split a relation into logically related and correct parts. A relation can be

fragmented in two ways:
• Horizontal Fragmentation

• Vertical Fragmentation

Slide 25- 37

Data Fragmentation, Replication and Allocation

• Horizontal fragmentation
• It is a horizontal subset of a relation which contain those of tuples which satisfy

selection conditions.

• Consider the Employee relation with selection condition (DNO = 5). All tuples satisfy
this condition will create a subset which will be a horizontal fragment of Employee
relation.

• A selection condition may be composed of several conditions connected by AND or
OR.

• Derived horizontal fragmentation: It is the partitioning of a primary relation to other
secondary relations which are related with Foreign keys.

Data Fragmentation, Replication and Allocation

• Vertical fragmentation
• It is a subset of a relation which is created by a subset of columns. Thus a vertical

fragment of a relation will contain values of selected columns. There is no selection
condition used in vertical fragmentation.

• Consider the Employee relation. A vertical fragment of can be created by keeping
the values of Name, Bdate, Sex, and Address.

• Because there is no condition for creating a vertical fragment, each fragment must
include the primary key attribute of the parent relation Employee. In this way all
vertical fragments of a relation are connected.

Data Fragmentation, Replication and Allocation

• Representation
• Horizontal fragmentation

• Each horizontal fragment on a relation can be specified by a sCi (R) operation in the
relational algebra.

• Complete horizontal fragmentation

• A set of horizontal fragments whose conditions C1, C2, …, Cn include all the tuples in R-
that is, every tuple in R satisfies (C1 OR C2 OR … OR Cn).

• Disjoint complete horizontal fragmentation: No tuple in R satisfies (Ci AND Cj) where i ≠
j.

• To reconstruct R from horizontal fragments a UNION is applied.

Slide 25- 40

Data Fragmentation, Replication and Allocation

• Representation
• Vertical fragmentation

• A vertical fragment on a relation can be specified by a Li(R) operation in the relational
algebra.

• Complete vertical fragmentation

• A set of vertical fragments whose projection lists L1, L2, …, Ln include all the attributes in
R but share only the primary key of R. In this case the projection lists satisfy the
following two conditions:

• L1  L2  ...  Ln = ATTRS (R)

• Li  Lj = PK(R) for any i j, where ATTRS (R) is the set of attributes of R and PK(R) is the
primary key of R.

• To reconstruct R from complete vertical fragments a OUTER UNION is applied.

Data Fragmentation, Replication and Allocation

• Representation
• Mixed (Hybrid) fragmentation

• A combination of Vertical fragmentation and Horizontal fragmentation.

• This is achieved by SELECT-PROJECT operations which is represented by Li(sCi (R)).

• If C = True (Select all tuples) and L ≠ ATTRS(R), we get a vertical fragment, and if C ≠ True
and L ≠ ATTRS(R), we get a mixed fragment.

• If C = True and L = ATTRS(R), then R can be considered a fragment.

Slide 25- 42

Data Fragmentation, Replication and Allocation

• Fragmentation schema
• A definition of a set of fragments (horizontal or vertical or horizontal and vertical)

that includes all attributes and tuples in the database that satisfies the condition that
the whole database can be reconstructed from the fragments by applying some
sequence of UNION (or OUTER JOIN) and UNION operations.

• Allocation schema
• It describes the distribution of fragments to sites of distributed databases. It can be

fully or partially replicated or can be partitioned.

Slide 25- 43

Data Fragmentation, Replication and Allocation

• Data Replication
• Database is replicated to all sites.

• In full replication the entire database is replicated and in partial replication some
selected part is replicated to some of the sites.

• Data replication is achieved through a replication schema.

• Data Distribution (Data Allocation)
• This is relevant only in the case of partial replication or partition.

• The selected portion of the database is distributed to the database sites.

Slide 25- 44

Types of Distributed Database Systems

• Homogeneous
• All sites of the database

system have identical setup,
i.e., same database system
software.

• The underlying operating
system may be different.

• For example, all sites run
Oracle or DB2, or Sybase or
some other database
system.

• The underlying operating
systems can be a mixture of
Linux, Window, Unix, etc.

Site 5
Site 1

Site 2Site 3

Oracle Oracle

Oracle
Oracle

Site 4

Oracle

LinuxLinux

Window

Window
Unix

Communications

network

Slide 25- 45

Types of Distributed Database Systems

• Heterogeneous

• Federated: Each site may run different database system but the data
access is managed through a single conceptual schema.

• This implies that the degree of local autonomy is minimum. Each site must
adhere to a centralized access policy. There may be a global schema.

• Multidatabase: There is no one conceptual global schema. For data
access a schema is constructed dynamically as needed by the
application software.

Communications

network

Site 5
Site 1

Site 2Site 3

Network

DBMS

Relational

Site 4

Object

Oriented

LinuxLinux

Unix

Hierarchical

Object

Oriented

RelationalUnix

Window

Slide 25- 46

Types of Distributed Database Systems

• Federated Database Management Systems Issues
• Differences in data models:

• Relational, Objected oriented, hierarchical, network, etc.

• Differences in constraints:
• Each site may have their own data accessing and processing constraints.

• Differences in query language:
• Some site may use SQL, some may use SQL-89, some may use SQL-92, and so on.

Slide 25- 47

Query Processing in Distributed Databases

• Issues
• Cost of transferring data (files and results) over the network.

• This cost is usually high so some optimization is necessary.

• Example relations: Employee at site 1 and Department at Site 2

• Employee at site 1. 10,000 rows. Row size = 100 bytes. Table size = 106 bytes.

• Department at Site 2. 100 rows. Row size = 35 bytes. Table size = 3,500 bytes.

• Q: For each employee, retrieve employee name and department name Where the
employee works.

• Q: Fname,Lname,Dname (Employee Dno = Dnumber Department)

Fname Minit Lname SSN Bdate Address Sex Salary Superssn Dno

Dname Dnumber Mgrssn Mgrstartdate

Slide 25- 48

Query Processing in Distributed Databases

• Result
• The result of this query will have 10,000 tuples, assuming that every

employee is related to a department.

• Suppose each result tuple is 40 bytes long. The query is submitted at site 3
and the result is sent to this site.

• Problem: Employee and Department relations are not present at site 3.

Slide 25- 49

Query Processing in Distributed Databases

• Strategies:
1. Transfer Employee and Department to site 3.

• Total transfer bytes = 1,000,000 + 3500 = 1,003,500 bytes.

2. Transfer Employee to site 2, execute join at site 2 and send the result to site 3.
• Query result size = 40 * 10,000 = 400,000 bytes. Total transfer size = 400,000 +

1,000,000 = 1,400,000 bytes.

3. Transfer Department relation to site 1, execute the join at site 1, and send the result
to site 3.
• Total bytes transferred = 400,000 + 3500 = 403,500 bytes.

• Optimization criteria: minimizing data transfer.

Slide 25- 50

Query Processing in Distributed Databases

• Strategies:
1. Transfer Employee and Department to site 3.

• Total transfer bytes = 1,000,000 + 3500 = 1,003,500 bytes.

2. Transfer Employee to site 2, execute join at site 2 and send the result to site 3.
• Query result size = 40 * 10,000 = 400,000 bytes. Total transfer size = 400,000 +

1,000,000 = 1,400,000 bytes.

3. Transfer Department relation to site 1, execute the join at site 1, and send the result
to site 3.
• Total bytes transferred = 400,000 + 3500 = 403,500 bytes.

• Optimization criteria: minimizing data transfer.
• Preferred approach: strategy 3.

Slide 25- 51

Query Processing in Distributed Databases

• Consider the query
• Q’: For each department, retrieve the department name and the name of

the department manager

• Relational Algebra expression:
• Fname,Lname,Dname (Employee Mgrssn = SSN Department)

Slide 25- 52

Query Processing in Distributed Databases

• The result of this query will have 100 tuples, assuming that every department
has a manager, the execution strategies are:
1. Transfer Employee and Department to the result site and perform the join at site 3.

• Total bytes transferred = 1,000,000 + 3500 = 1,003,500 bytes.

2. Transfer Employee to site 2, execute join at site 2 and send the result to site 3.
Query result size = 40 * 100 = 4000 bytes.
• Total transfer size = 4000 + 1,000,000 = 1,004,000 bytes.

3. Transfer Department relation to site 1, execute join at site 1 and send the result to
site 3.
• Total transfer size = 4000 + 3500 = 7500 bytes.

Slide 25- 53

Query Processing in Distributed Databases

• The result of this query will have 100 tuples, assuming that every department
has a manager, the execution strategies are:
1. Transfer Employee and Department to the result site and perform the join at site 3.

• Total bytes transferred = 1,000,000 + 3500 = 1,003,500 bytes.

2. Transfer Employee to site 2, execute join at site 2 and send the result to site 3.
Query result size = 40 * 100 = 4000 bytes.
• Total transfer size = 4000 + 1,000,000 = 1,004,000 bytes.

3. Transfer Department relation to site 1, execute join at site 1 and send the result to
site 3.
• Total transfer size = 4000 + 3500 = 7500 bytes.

• Preferred strategy: Choose strategy 3.

Slide 25- 54

Query Processing in Distributed Databases

• Now suppose the result site is 2. Possible strategies :
1. Transfer Employee relation to site 2, execute the query and present the

result to the user at site 2.
• Total transfer size = 1,000,000 bytes for both queries Q and Q’.

2. Transfer Department relation to site 1, execute join at site 1 and send the
result back to site 2.
• Total transfer size for Q = 400,000 + 3500 = 403,500 bytes and for Q’ = 4000 + 3500 =

7500 bytes.

Slide 25- 55

Query Processing in Distributed Databases

• Semijoin:
• Objective is to reduce the number of tuples in a relation before transferring it to

another site.

Slide 25- 56

Concurrency Control and Recovery

• Distributed Databases encounter a number of concurrency control
and recovery problems which are not present in centralized
databases. Some of them are listed below.

• Dealing with multiple copies of data items

• Failure of individual sites

• Communication link failure

• Distributed commit

• Distributed deadlock

Slide 25- 57

Concurrency Control and Recovery

• Details
• Dealing with multiple copies of data items:

• The concurrency control must maintain global consistency. Likewise the recovery
mechanism must recover all copies and maintain consistency after recovery.

• Failure of individual sites:
• Database availability must not be affected due to the failure of one or two sites and the

recovery scheme must recover them before they are available for use.

Slide 25- 58

Concurrency Control and Recovery

• Details (contd.)
• Communication link failure:

• This failure may create network partition which would affect database availability even
though all database sites may be running.

• Distributed commit:
• A transaction may be fragmented and they may be executed by a number of sites. This

require a two or three-phase commit approach for transaction commit.

• Distributed deadlock:
• Since transactions are processed at multiple sites, two or more sites may get involved in

deadlock. This must be resolved in a distributed manner.

Slide 25- 59

Concurrency Control and Recovery

• Distributed Concurrency control based on a distributed copy of a data
item

• Primary site technique: A single site is designated as a primary site which
serves as a coordinator for transaction management.

Communications neteork

Site 5
Site 1

Site 2

Site 4

Site 3

Primary site

Slide 25- 60

Concurrency Control and Recovery

• Transaction management:
• Concurrency control and commit are managed by this site.

• In two phase locking, this site manages locking and releasing data items. If all
transactions follow two-phase policy at all sites, then serializability is
guaranteed.

Slide 25- 61

Concurrency Control and Recovery

• Transaction Management
• Advantages:

• An extension to the centralized two phase locking so implementation and management
is simple.

• Data items are locked only at one site but they can be accessed at any site.

• Disadvantages:
• All transaction management activities go to primary site which is likely to overload the

site.

• If the primary site fails, the entire system is inaccessible.

• To aid recovery a backup site is designated which behaves as a shadow of primary
site. In case of primary site failure, backup site can act as primary site.

Slide 25- 62

Concurrency Control and Recovery

• Primary Copy Technique:
• In this approach, instead of a site, a data item partition is designated as primary

copy. To lock a data item just the primary copy of the data item is locked.

• Advantages:
• Since primary copies are distributed at various sites, a single site is not overloaded

with locking and unlocking requests.

• Disadvantages:
• Identification of a primary copy is complex. A distributed directory must be

maintained, possibly at all sites.

Slide 25- 63

Concurrency Control and Recovery

• Recovery from a coordinator failure
• In both approaches a coordinator site or copy may become unavailable. This will

require the selection of a new coordinator.

• Primary site approach with no backup site:
• Aborts and restarts all active transactions at all sites. Elects a new coordinator and

initiates transaction processing.

• Primary site approach with backup site:
• Suspends all active transactions, designates the backup site as the primary site and

identifies a new back up site. Primary site receives all transaction management
information to resume processing.

• Primary and backup sites fail or no backup site:
• Use election process to select a new coordinator site.

Slide 25- 64

Concurrency Control and Recovery

• Concurrency control based on voting:
• There is no primary copy of coordinator.

• Send lock request to sites that have data item.

• If majority of sites grant lock then the requesting transaction gets the data
item.

• Locking information (grant or denied) is sent to all these sites.

• To avoid unacceptably long wait, a time-out period is defined. If the
requesting transaction does not get any vote information then the transaction
is aborted.

Slide 25- 65

Client-Server Database Architecture

• It consists of clients running client software, a set of servers which
provide all database functionalities and a reliable communication
infrastructure.

Client 1

Client 3

Client 2

Client n

Server 1

Server 2

Server n

Slide 25- 66

Client-Server Database Architecture

• Clients reach server for desired service, but server does reach clients.

• The server software is responsible for local data management at a
site, much like centralized DBMS software.

• The client software is responsible for most of the distribution
function.

• The communication software manages communication among clients
and servers.

Slide 25- 67

Client-Server Database Architecture

• The processing of a SQL queries goes as follows:
• Client parses a user query and decomposes it into a number of independent

sub-queries. Each subquery is sent to appropriate site for execution.

• Each server processes its query and sends the result to the client.

• The client combines the results of subqueries and produces the final result.

Slide 25- 68

Recap

• Distributed Database Concepts

• Data Fragmentation, Replication and Allocation

• Types of Distributed Database Systems

• Query Processing

• Concurrency Control and Recovery

• 3-Tier Client-Server Architecture

Logical Database

• A Logical Database is a special type of ABAP (Advance Business
Application and Programming) that is used to retrieve data from
various tables and the data is interrelated to each other.

• Also, a logical database provides a read-only view of Data.

Structure Of Logical Database:

• A Logical database uses only a hierarchical structure of tables i.e. Data
is organized in a Tree-like Structure and the data is stored as records
that are connected to each other through edges (Links).

• Logical Database contains Open SQL statements which are used to
read data from the database.

• The logical database reads the program, stores them in the program if
required, and passes them line by line to the application program.

https://www.geeksforgeeks.org/sql-ddl-dql-dml-dcl-tcl-commands/
https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/

Features and Tasks of Logical Database

• We can select only that type of Data that we need.

• Data Authentication is done in order to maintain security.

• Logical Database uses hierarchical Structure due to this data integrity is maintained.

• With the help of the Logical database, we will read the same data from multiple
programs.

• A logical database defines the same user interface for multiple programs.

• Logical Database ensures the Authorization checks for the centralized sensitive database.

• With the help of a Logical Database, Performance is improved. Like in Logical Database
we will use joins instead of multiple SELECT statements, which will improve response
time and this will increase the Performance of Logical Database.

•

WEB Database

• The Web-based database management system is one of the essential
parts of DBMS and is used to store web application data.

• A web-based Database management system is used to handle those
databases that are having data regarding E-commerce, E-
business, blogs, e-mail, and other online applications.

Requirement of WEB Database

• The ability and right to use valuable corporate data in a fully secured manner.

• Provides data and vendor's autonomous connectivity that allows freedom of choice in selecting the DBMS
for present and future use.

• The capability to interface to the database, independent of any proprietary Web browser and/or Web server.

• A connectivity solution that takes benefit of all the features of an organization's DBMS.

• An open-architectural structure that allows interoperability with a variety of systems and technologies; such
as:

• Different types of Web servers
• Microsoft's Distributed Common Object Model (DCOM) / Common Object Model (COM)
• CORBA / IIOP
• Java / RMI which is Remote Method Invocation
• XML (Extensible Markup Language)
• Various Web services (SOAP, UDDI, etc.)

• A cost-reducing way which allows for scalability, development, and changes in strategic directions and helps
lessen the costs of developing and maintaining those applications

• Provides support for transactions that span multiple HTTP requests.

• Gives minimal administration overhead.

Benefits of WEB Database

• Provides simplicity

• Web-DBMS is Platform independence

• Provides Graphical User Interface (GUI)

• Standardization

• Provides Cross-platform support

• Facilitates transparent network access

• Scalability

• Innovation

Object and Object-Relational
Databases
• Object databases (ODB)

• Object data management systems (ODMS)

• Meet some of the needs of more complex applications

• Specify:
• Structure of complex objects

• Operations that can be applied to these objects

Overview of Object Database Concepts

• Introduction to object-oriented concepts and features
• Origins in OO programming languages

• Object has two components:
• State (value) and behavior (operations)

• Instance variables
• Hold values that define internal state of object

• Operation is defined in two parts:
• Signature or interface and implementation

Overview of Object Database Concepts
(cont’d.)

• Inheritance
• Permits specification of new types or classes that inherit much of their structure and/or

operations from previously defined types or classes

• Operator overloading
• Operation’s ability to be applied to different types of objects

• Operation name may refer to several distinct implementations

Object Identity, and Objects versus Literals

• Unique identity
• Implemented via a unique, system-generated object identifier (OID)

• Immutable

• Most OO database systems allow for the representation of both
objects and literals (or values)

Complex Type Structures for Objects and
Literals
• Structure of arbitrary complexity

• Contain all necessary information that describes object or literal

• Nesting type constructors
• Construct complex type from other types

• Most basic constructors:
• Atom

• Struct (or tuple)

• Collection

Complex Type Structures for Objects and
Literals (cont’d.)
• Collection types:

• Set

• Bag

• List

• Array

• Dictionary

• Object definition language (ODL)
• Used to define object types for a particular database application

Encapsulation of Operations and Persistence
of Objects
• Encapsulation

• Related to abstract data types and information hiding in programming
languages

• Define behavior of a type of object based on operations that can be
externally applied

• External users only aware of interface of the operations

• Divide structure of object into visible and hidden attributes

Object Behavior/Operations

• See figure 11.2

Encapsulation of Operations
• Object constructor

• Used to create a new object

• Destructor operation
• Used to destroy (delete) an object

• Modifier operations
• Modify the states (values) of various attributes of an object

• Retrieve information about the object

• Dot notation used to apply operations to object

Persistence of Objects

• Transient objects
• Exist in executing program

• Disappear once program terminates

• Persistent objects
• Stored in database and persist after program termination

• Naming mechanism

• Reachability

Type Hierarchies and Inheritance

• Inheritance
• Definition of new types based on other predefined types

• Leads to type (or class) hierarchy

• Type: type name and list of visible (public) functions
• Format:

• TYPE_NAME: function, function, ..., function

Type Hierarchies and Inheritance (cont’d.)

• Subtype
• Useful when creating a new type that is similar but not identical to an already

defined type

• Example:
• EMPLOYEE subtype-of PERSON: Salary, Hire_date, Seniority

• STUDENT subtype-of PERSON: Major, Gpa

Type Hierarchies and Inheritance (cont’d.)

• Extent
• Store collection of persistent objects for each type or subtype

• Extents are subsets of the extent of class OBJECT

• Persistent collection
• Stored permanently in the database

• Transient collection
• Exists temporarily during the execution of a program

Other Object-Oriented Concepts

• Polymorphism of operations
• Also known as operator overloading

• Allows same operator name or symbol to be bound to two or more different
implementations

• Depending on type of objects to which operator is applied

• Multiple inheritance
• Subtype inherits functions (attributes and methods) of more than one

supertype

Other Object-Oriented Concepts (cont’d.)

• Selective inheritance
• Subtype inherits only some of the functions of a supertype

Summary of Object Database Concepts

• Object identity

• Type constructor

• Encapsulation of operations

• Programming language compatibility

• Type hierarchies and inheritance

• Extents

• Polymorphism and operator overloading

